

Design of multi-phase and catalytic chemical reactors: a simulation tool for pollution prevention

Jack R. Hopper, Jamal M. Saleh, Ralph Pike

92

Abstract A comprehensive chemical reactor analysis tool was required to complete a project to develop an advanced on-line process optimization analysis system for pollution prevention. The advanced process analysis system integrates programs (reactors, on-line optimization, pinch analysis, and process flow-sheeting) to analyze and modify chemical processes for waste minimization. The reactor analysis program is to be used to evaluate and analyze multi-phase and catalytic reactors to suggest to the plant and process engineers the best reactor type and operating conditions. A multi-phase catalytic reactor design and analysis tool, ReaCat, has been developed. ReaCat incorporates models to design the following reactor types: plug flow, CSTR, batch, catalytic fixed-bed, catalytic fluidized-bed, gas–liquid stirred tank, trickle-bed, three-phase fixed bubble-bed, bubble slurry column, CSTR slurry, and three-phase fluidized-bed. This paper gives a summary of the multi-phase and catalytic reactors: classifications, theory and design models, numerical methods, and solution algorithms. A description of the reactor analysis tool including comparison cases with experimental data is presented.

List of symbols

A	Heat transfer area (m^2)	$C_{\text{G},i}^{\circ}$	Gas bulk concentration of component i (mol/l)	$C_{\text{G},i}^{\circ}$	Inlet bulk gas concentration of component i (mol/l)	$C_{\text{G},i}^{\circ}$	Outlet bulk gas concentration of component i (mol/l)	$C_{\text{L},i}^{\circ}$	Liquid bulk concentration of component i (mol/l)	$C_{\text{L},i}^{\circ}$	Inlet bulk liquid concentration of component i (mol/l)
$C_{\text{S},i}$											
C_{pg}											
C_{pL}											
D_A											
$D_{\text{L},i}$											
E											
F_{gas}											
F_i°											
ΔH_{ri}											
H_i											
K											
K_{BC}											
K_{CE}											
$K_{\text{c}}a_{\text{c}}$											
$(K_{\text{L}}a_{\text{g}})_i$											
$(K_{\text{c}}a_{\text{c}})_i$											
$K_{\text{g}}a_{\text{L}}$											
$K_{\text{L}}a_{\text{L}}$											
k_s											
N_s											
P_i°											
P°											
Q_{G}											
Q_{L}											
Q_{Gmax}											
R											
$(-r_i)$											
t											
T_{i}											
T_{o}											
T_{a}											
U											
U_{G}											
U_{b}											
U_{L}											
V_{R}											
V_{T}											

Received: 20 January 2000 / Accepted: 2 April 2001

Published online: 10 July 2001

© Springer-Verlag 2001

J.R. Hopper (✉), J.M. Saleh
Lamar University, Chemical Engineering Department,
P.O. Box 10053, Beaumont, TX 77710, USA
E-mail: hopperjr@hal.lamar.edu

R. Pike
Louisiana State University, Baton Rouge, Louisiana, USA

Support from the Gulf Coast Hazardous Substance Research Center
and the Environmental Protection Agency is gratefully acknowledged

z	Axial position (cm)
ρ_L	Density of liquid (g/cm ³)
τ	Gas-space time (V_R/Q_G) (s)

Introduction

To perform an advanced process system analysis, which is used to evaluate chemical and refinery processes for waste minimization (Telang 1996, Pike et al. 1998), an advanced chemical reactor tool is essential. The reactor design tool is to be used to evaluate and analyze the various types of industrial multi-phase and catalytic reactors. In an effective and time saving manner, plant and process engineers need a reactor design tool to analyze and study the effect of operating conditions on the pollution index. For this purpose, ReaCat, a multi-phase catalytic reactor analysis simulation tool, has been developed with the following features:

1. User-friendly input/output interface
2. Graphical and tabular data output
3. Reactor models included
 - i Homogeneous reactors (plug flow, CSTR, batch)
 - ii Heterogeneous reactors
 - I Catalytic gas fixed-bed
 - II Catalytic liquid fixed-bed
 - III Catalytic gas fluidized-bed
 - IV Catalytic liquid fluidized-bed
 - V Gas-liquid continuous stirred tank
 - VI Three-phase trickle-bed
 - VII Three-phase bubble fixed-bed
 - VIII Three-phase catalytic gas-liquid slurry stirred tank
 - XI Three-phase catalytic gas-liquid slurry bubble-bed
 - X Three-phase catalytic gas-liquid fluidized-bed
4. Power-law reaction rate or the Langmuir-Hinshelwood model to account for the catalytic adsorption effects
5. Equipped with correlation to estimate the external mass transfer effects (gas-liquid, and liquid-solid), and dispersion coefficients
6. Estimation of the catalytic effectiveness factor to account for the intra-particle resistance
7. Isothermal and non-isothermal/non-adiabatic conditions

Table 1. Definitions of reactors

Catalytic packed-bed	Gas or liquid reactants flow over a fixed-bed of catalysts
Catalytic fluidized-bed	The up-flow gas or liquid phase suspends the fine catalyst particles
CSTR gas-liquid	Liquid and gas phases are mechanically agitated
Bubble gas-liquid bed	Liquid phase is agitated by the bubble rise of the gas phase. Liquid phase is continuous
Trickle-bed	Concurrent down-flow of gas and liquid over a fixed-bed of catalyst. Liquid trickles down, while gas phase is continuous
Bubble fixed-bed	Concurrent up-flow of gas and liquid. Catalyst bed is completely immersed in a continuous liquid flow while gas rises as bubbles
CSTR slurry	Mechanically agitated gas-liquid catalyst reactor. The fine catalyst particles are suspended in the liquid phase by means of agitation. (Batch liquid phase may also be used)
Bubble slurry column	Liquid is agitated by means of the dispersed gas bubbles. Gas bubble provides the momentum to suspend the catalyst particles
Three-phase fluidized-bed	Catalyst particles are fluidized by an upward liquid flow while gas phase rises in a dispersed bubble regime

8. Multi-reaction systems with up to 30 reactions and 36 components
9. Prediction of reactor hydrodynamics such as pressure drop, power consumption, catalyst-wetting factor, and flow regimes.

Multi-phase and catalytic reactor, definitions and classifications

In industrial chemical processes, multi-phase reactors have a wide range of applications such as oxidation, hydrogenation, hydro-desulfurization, and the Fischer-Tropsch synthesis. Table 1 lists the definition for the different reactor types included in this study. Multi-phase reactors are defined as reactors with at least two distinct phases in contact. Reactors, in general, may be classified based on the number of phase coexistence into the following category:

- i Homogeneous: one phase such as gas or liquid exists in the reactor. The hydrodynamic flow characteristic of the mixture determines the reactor type such as plug, CSTR, or batch.
- ii Heterogeneous: two distinct phases of reactants (or catalyst) coexist. This category may be classified into the following subcategories:
 - a Catalytic reactors: gas or liquid phase (or both) is in contact with a catalyst (mainly solid, but could be another liquid phase). Examples of this category include the catalytic packed-bed (catalytic gas reaction) and the three-phase trickle-bed (catalytic gas-liquid reaction).
 - b Non-catalytic reactors: gas-liquid or liquid-liquid reactions are carried in a variety of contact vessels such as the gas-liquid continuously stirred tank reactor.

Each reactor type exhibits certain characteristics and advantages that may make it the best candidate for a specific reaction; the power of a simulation tool becomes very clear for such an analysis. For a complete discussion on examples, classification, definitions, and advantages or disadvantages of multi-phase and catalytic industrial reactors, the reader is referred to Ostergaard (1974), Shah (1979), Tarhan (1979), Ramachandran and Chaudhari (1983), Tsutsumi et al. (1987), and Saleh (1994).

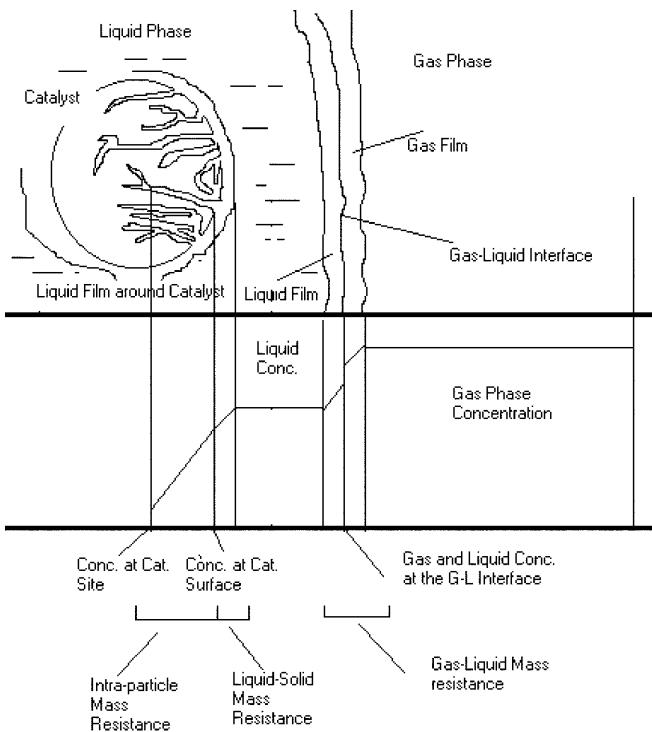


Fig. 1. Gas-liquid-solid contact in three-phase reactors

Design models

Design of multi-phase and catalytic reactors is more complex than that of homogeneous reactors due to the following: the coexistence of more than one phase introduces the mass transfer resistance (Fig 1), the intra-

particle diffusion, adsorption effects, and the flow regimes, which may be different for each phase. The details of the mathematical model, assumptions, and solution algorithm for each of the reactor types are listed in Saleh (1994), Hedge (1999), and Waghchoure (1999). Tables 2, 3, 4, 5, 6, and 7 show the design model, assumptions, and solution algorithms for the three-phase trickle-bed, three-phase catalytic slurry CSTR, and gas-liquid (non-catalytic) agitated tank, catalytic liquid fluidized-bed, catalytic gas fluidized-bed, and catalytic fixed-bed, respectively. The trickle-bed model (Table 2) is applicable to three-phase fixed-bed, three-phase fluidized-bed, and three-phase bubble slurry-bed as well. A complete list of correlations implemented in the ReaCat program to predict the mass transfer and hydrodynamic parameters are listed in Saleh (1994), Hedge (1999), and Waghchoure (1999). The selection of these correlations is based on the recommendation, found in literature review, of other authorities in this area. For examples, the correlation implemented for the three-phase reactors are those recommended by Ramachandran and Chaudhari (1983). Since most of the correlations were developed for laboratory and pilot reactors, program users are allowed to skip correlation when experimental data are available. Tables 8 and 9 give a summary of the correlations used in the program. For catalytic reactors, intra-particle diffusion is accounted for by multiplying the intrinsic reaction rate by the catalytic effectiveness factor. The procedure to estimate the catalytic effectiveness factor is listed in Table 10. Procedures to warn the user of conditions that violate the model assumptions are also included. For example, when the catalyst-wetting factor is not unity or when a flow regime

Table 2. Three-phase gas-liquid catalytic reactors design model (trickle-bed, fixed-up-flow bubble-bed, bubble slurry bed, three-phase fluidized-bed)

$$\text{Non-volatile liquid-phase mass balance} \quad D_{L,i} \frac{d^2 C_{L,i}}{dz^2} - U_L \frac{dC_{L,i}}{dz} - (K_c a_c)_i (C_{L,i} - C_{S,i}) = 0.0 \quad (1)$$

$$\text{Volatile liquid-phase mass balance} \quad D_{L,i} \frac{d^2 C_{L,i}}{dz^2} - U_L \frac{dC_{L,i}}{dz} + (K_L a_g)_i \left(\frac{C_{G,i}}{H_i} - C_{L,i} \right) - (K_c a_c)_i (C_{L,i} - C_{S,i}) = 0.0 \quad (2)$$

$$\text{Boundary conditions} \quad \text{At } z = 0 \quad -D_{L,i} \frac{dC_{L,i}}{dz} = U_L \left(C_{L,i} - C_{L,i}^i \right)$$

$$\text{At } z = L \quad \frac{dC_{L,i}}{dz} = 0$$

$$\text{Gas-phase mass balance} \quad -U_g \frac{dC_{g,i}}{dz} - (K_L a_g)_i \left(\frac{C_{G,i}}{H_i} - C_{L,i} \right) = 0.0 \quad (3)$$

$$\text{Component mass balance around the catalyst} \quad (K_c a_c)_i (C_{L,i} - C_{S,i}) = (-r_i) \quad (4)$$

Model assumptions

1. Complete radial mixing
2. Axial back mixing is accounted for by the dispersion parameter
3. Gas and liquid concentration and temperature profiles are function of reactor length only
4. Complete catalyst-wetting factor and uniform catalyst concentration and activity
5. The catalytic effectiveness factor accounts for the intra-particle diffusion resistance

Solution algorithm

1. Equations 1-4 are developed for each component in mixture
2. At the inlet of reactor, $z=0$, the nonlinear algebraic system of Eq. 4 is solved the concentration at the catalyst surface by the Newton-Raphson numerical method
3. When plug flow model is assumed, Eqs. 2, 3, and 4 are integrated using the previously calculated surface concentration. For the dispersion model, the shooting method is applied
4. Steps 1-3 are repeated for the entire reactor length

developed is other than the assumed, a warning message will be displayed at the end of the calculation. Each of the mathematical models has been tested versus other published experimental or simulation work. Table 11 lists some comparison examples; for more examples the reader may refer to Saleh (1994).

Program description

A user-friendly input/output program has been developed to solve and analyze the different reactor types. Figures 2, 3, and 4 show a few of input screens. A complete user manual may be requested from the authors. Results may be viewed in graphical or tabular format. The user can view conversion, concentration, temperature, and pressure, which may be displayed as a function of reactor length, volume, catalyst weight, or reaction time (Fig 5).

Another version of ReaCat was built to allow simple flow-sheeting capability, such as connecting reactors in series or parallel, generic mixing and splitting of streams, and generic heat transfer equipment (Fig 6).

Example 1, sulfuric acid production by contact process

The production of sulfuric acid by the contact process is a three-step process that produces sulfuric acid and steam from air, molten sulfur, and water. The process consists of three sections: (1) the feed preparation section; (2) the reactor section; (3) the absorber section. In the feed preparation section, molten sulfur feed is combusted with dry air in the sulfur burner to produce SO_2 . The second section is the reactor or converter section. Gases from the feed section, sulfur dioxide and air, enter at (787 °F) 419.4 °C and (19.4 Psia) 133,759.12 Pa. Sulfur dioxide and

Table 3. Three-phase gas–liquid catalytic reactors design model (CSTR slurry)

Non-volatile component liquid-phase mass balance	$Q_L(C_{L,i}^i - C_{L,i}^o) - V_R(K_c a_c)_i(C_{L,i}^o - C_{S,i}) = 0.0$	(1)
Non-volatile component liquid-phase mass balance	$Q_L(C_{L,i}^i - C_{L,i}^o) + V_R(K_L a_g)_i\left(\frac{C_{G,i}^o}{H_i} - C_{L,i}^o\right) - V_R(K_c a_c)_i(C_{L,i}^o - C_{S,i}) = 0.0$	(2)
Gas-phase mass balance	$Q_G(C_{G,i}^i - C_{G,i}^o) - V_R(K_L a_g)_i\left(\frac{C_{G,i}^o}{H_i} - C_{L,i}^o\right) = 0.0$	(3)
Component mass balance around the catalyst	$V_R(K_c a_c)_i(C_{L,i}^o - C_{S,i}) = V_R(-r_i)$	(4)

Model assumption

1. Gas and liquid phases are well agitated
2. Uniform concentration and temperature within each phase in the entire reactor volume
3. Complete and homogeneous catalyst suspension
4. Continuous flow

Solution algorithm

1. Equations 1–4 are developed for each component in mixture
2. An initial guess for the surface concentration is assumed
3. For a given reactor volume, the system of nonlinear algebraic equations is solved iteratively by the Newton–Raphson method to find the exit conditions

Table 4. Gas–liquid agitated tank, design model

Gas-phase component mass balance	$(Q_G/RT)(P^i - P^o) + V_R E K_G a_L (P^o - P^i) = 0$	(1)
or	$F_{\text{gas}}/P_T (P^i - P^o) - V_R E K_G a_L (P^o - P^i) = 0$	
Liquid-phase volatile-component mass balance	$Q_L(C_{L,i}^i - C_{L,i}^o) + V_R E K_L a_L (P^o - P^i) + r_i V_R = 0$	(2)
Liquid-phase non-volatile-component mass balance	$Q_L(C_{L,i}^i - C_{L,i}^o) + r_i V_R = 0$	(3)
Energy balance	$\Sigma F^i [\alpha_i(T_i - T_o) + \beta_i/2(T_i^2 - T_o^2) + \gamma_i/3(T_i^3 - T_o^3)] - [V_R \Sigma(\Delta H_{r,i} r_i)] + UA(T_a - T_o) = 0$	(4)

Model assumption

1. Steady state
2. Both phases are assumed to be perfectly macro-mixed
3. Uniform gas and liquid temperature

Solution algorithm

1. Provide an initial guess for the design variables: gas and liquid concentrations and temperature
2. Estimate the hydrodynamic parameters: mass transfer coefficients, power consumption, and minimum gas flow rate
3. Equations 1–4 are developed for each component in mixture
4. The system of non-linear algebraic equation is solved simultaneously by the Newton–Raphson method

oxygen from air react with each other to produce SO_3 and heat since this is an exothermic reaction. SO_3 from the reactor section is passed to the absorber section where it reacts with water to form sulfuric acid. In the actual process plant, four converters are used to obtain maximum possible conversion with intermediate removal of heat and

Table 5. Catalytic liquid fluidized-bed reactors, design model

Liquid-phase component balance

$$\text{Plug flow: } -U_L \frac{dC_{iL}}{dZ} = K_L(C_{iL} - C_{iS}) \quad (1)$$

$$\text{Dispersion: } D_{La} \frac{d^2 C_{iL}}{dZ^2} - U_L \frac{dC_{iL}}{dZ} = K_L(C_{iL} - C_{iS}) \quad (2)$$

$$\text{Catalyst (emulsion) phase: } K_L(C_{iL} - C_{iS}) = (R)_{i\text{CatalystPhase}} \quad (3)$$

$$\text{Energy balance: } \rho_L U_L C_{pL} \frac{dT}{dZ} = \sum_{j=1}^{NR} R_j \Delta H r_j + U_a (T_{\text{ambient}} - T_{\text{Reactor}}) \quad (4)$$

Assumptions

1. The reaction in the liquid phase is assumed negligible
2. By neglecting internal convection effects, the catalyst and the liquid are assumed to be at the same temperature based on the extremely small particle sizes. (in μm)
3. Steady state

Solution algorithm

1. Estimate the required parameters. (U_L , K_L , expanded length of bed)
2. Catalyst surface concentrations (Eq. 3) are converged using the Newton-Raphson method with the Gauss-Jordan elimination method. As a starting guess, catalyst phase concentrations are assumed to be equal to concentrations in liquid phase
3. Liquid concentrations (Eq. 1 or 2) for the next interval are calculated depending on type of the flow selected. (4th order Runge-Kutta for plug flow, finite difference for the dispersion model)

Table 6. Catalytic gas-fluidized-bed reactor, design model

Design equations

Bulk gas phase (bubble phase)

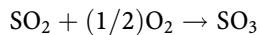
$$\text{Plug flow: } -U_b \frac{dC_{ib}}{dZ} = K_{BC}(C_{ib} - C_{ic}) \quad (1)$$

$$\text{With axial dispersion: } D_{ga} \frac{d^2 C_{ib}}{dZ^2} - U_b \frac{dC_{ib}}{dZ} = K_{BC}(C_{ib} - C_{ic}) \quad (2)$$

$$\text{Intermediate (cloud-wake) phase: } K_{BC}(C_{ib} - C_{ic}) = \chi_c (R)_{i\text{CloudPhase}} + K_{CE}(C_{ic} - C_{ie}) \quad (3)$$

$$\text{Catalyst (emulsion) phase: } K_{CE}(C_{ic} - C_{ie}) = \chi_e (R)_{i\text{EmulsionPhase}} \quad (4)$$

$$\text{Energy balance: } \rho_g U_b C_{pg} \frac{dT}{dZ} = \sum_{j=1}^{NR} R_j \Delta H r_j + U_a (T_{\text{ambient}} - T_{\text{Reactor}}) \quad (5)$$


Assumptions

1. Three phases present in a gas fluidized-bed reactor. Bulk gas phase is known as bubble phase. Intermediate phase contains both gas and the solids. Catalyst (emulsion) phase has solids in higher concentration
2. The gas bubbles formed are assumed to be spherical in nature
3. Mass transfer is believed to be happening in all three phases
4. The reaction occurring in bulk gas (bubble) phase is not significant and hence is neglected
5. Steady state

Solution algorithm

1. Estimate the required parameters using correlations. (D_b , U_b , γ_c , γ_e , K_{BC} , K_{CE})
2. Intermediate and solid surface concentrations (Eqs. 3 and 4) are converged using the Newton-Raphson method with the Gauss-Jordan elimination method
3. Bulk gas concentrations (Eqs. 1 or 2) for the next interval are calculated depending on type of flow selected. (4th order Runge-Kutta for plug flow, finite difference for the dispersion model)
4. For non-isothermal cases, the temperature for the next interval is calculated by Eq. 5 and used to find reaction rates for the next length interval
5. Steps 3 and 4 are repeated over the total reactor length

the product, SO_3 . The removal increases the equilibrium conversion. The reaction takes place on a vanadium pentoxide catalyst. Two types of this catalyst LP-110 and LP-120 are used in these reactors. The reaction is:

The kinetic model for this reaction was given by Harris and Norman (1972). The reaction rate is predicted by the following expression:

$$r_{\text{SO}_2} = \frac{P'_{\text{SO}_2} P_{\text{O}_2}^{1/2}}{\left(A + B P_{\text{O}_2}^{1/2} + C P'_{\text{SO}_2} + D P_{\text{SO}_3} \right)^2} \left[1 - \frac{P_{\text{SO}_3}}{K_p P_{\text{SO}_2} P_{\text{O}_2}^{1/2}} \right]$$

Table 7. Catalytic fixed-bed, design model

Mass balance around the catalyst	$(k_c a_c)_i (C_G - C_S)_i = \eta(-R_{\text{net}})_i$	(1)
Gas-phase component mass balance (plug flow model)	$-U_G \frac{dC_G i}{dz} - (k_c a_c)_i (C_G - C_S)_i = 0.0$	(2)
Gas-phase component mass balance (dispersion model)	$D_G \frac{d^2 C_G i}{dz^2} - U_G \frac{dC_G i}{dz} - (k_c a_c)_i (C_G - C_S)_i = 0.0$	(3)
Energy model	$U_G \rho_G C_P \frac{dT}{dz} = \sum (R_j \Delta H R_j) + UA(T - T_a)$	(4)
Model assumptions		
1. Complete radial mixing		
2. Dispersion coefficient is used to account for the axial back mixing		
3. Effectiveness factor accounts for the intra-particle resistance		
4. Steady state		
Solution algorithm		
1. At the reactor inlet, develop Eq. 1 for each component in the mixture		
2. Solve the system of non-linear algebraic equations for the concentration at the catalyst surface, C_s . This is an iterative procedure as follow: Guess C_s , solve for the effectiveness factor, evaluate the net intrinsic reaction rate for each component, then using the Newton-Raphson method to solve the system of Eqs. 1, new values for C_s are estimated. The process is repeated till no further change in C_s is occurring		
3. Develop Eqs. 2 or 3 (depending on the model choice, plug or dispersion) for each component in mixture; solve for the next increment in reactor length using the 4th order Runge-Kutta method or finite difference		
4. Repeat the above steps for the next reactor length increment		

Table 8. Correlation used for the three-phase catalytic reactors

Correlation	Trickle-bed	Fixed up-flow	CSTR slurry	Bubble slurry	Three-phase fluidized
Pressure drop	Larkins et al. (1961)	Turpin and Hintington (1967)	-	-	-
L and G holdup<1	Ellman et al. (1988)	Sato et al. (1973)	Fukushima and Kusaka (1979)	Calderbank (1958)	Yamashita and Aeon (1975)
		Ellman et al. (1990)	Achwal and Stepanek (1976)	Yung et al. (1979)	Maselker (1970)
G-L mass transfer coefficient	Ellman et al. (1988)	Reiss (1967)	Bern et al. (1976)	Akita and Yoshida (1974)	Dhanuka and Stepanek (1980)
	Sato et al. (1973)				Dakshinamurthy et al. (1974)
L-S mass transfer coefficient	Van Krevelen and Krekels (1948)	Specchia et al. (1978)	Sano et al. (1974)	Kobayashi and Saito (1965)	Lee et al. (1974)
	Dharwadker and Sylvester (1977)				
L dispersion coefficient	Michell and Furzer (1972)	Stiegel and Shah (1977)	-	Deckwer et al. (1974)	El-Temtamy et al. (1979)
G dispersion coefficient	Hochman and Effron (1969)	-	-	Mangartz and Pilhofer (1981)	-
Wall heat transfer coefficient	Specchia and Baldi (1979)	-	-	Fair (1967)	-
Power consumption	-	-	Luong and Volesky (1979)	-	-
			Michel and Miller (1962)		

P_{SO_2} , P_{O_2} , P_{SO_3} are interfacial partial pressures of SO_2 , O_2 , and SO_3 (atm)

K_p is the thermodynamic equilibrium constant ($atm^{-1/2}$)

Constants A , B , C , and D are function of temperature T
 P' denotes interfacial partial pressures of SO_2 and O_2 zero conversion under total pressure at the point or reactor (atm)

For catalyst type LP-110

$$A = e^{-6.8+4960/T}, B = 0, C = e^{10.32-7350/T}, D = e^{-7.38+6370/T}$$

98

For catalyst type LP-120

$$A = e^{-5.89+4060/T}, B = 0, C = e^{6.45-4610/T}, D = e^{-8.59+7020/T}$$

For the heat of reaction, an empirical formula is used, which was also derived by Harris and Norman (1972):

$$\Delta H_{reaction} = 1.827(-24097 - 0.26T + 1.69 \times 10^{-3}T^2 + 1.5 \times 10^{+5}/T) \rightarrow BTU/lbmol(cal/gmol)$$

The complete list of input parameters and operating conditions provided for the ReaCat Program is given in Kunii and Levenspiel (1969).

Table 9. Correlation used for the two-phase reactors

Gas-liquid continuous stirred tank reactor

1. Maximum gas flow rate (Q_{Gmax})
2. Bubble diameter (d_b)
3. Gas holdup (ϵ_G)
4. Liquid side mass transfer coefficient (k_L)

Catalytic liquid fluidized-bed

Mass transfer coefficient (K_L)

Catalytic gas fluidized-bed

1. Voidage at minimum fluidization (ϵ_{mf})
2. Velocity at minimum fluidization (U_{mf})
3. Bubble diameter (D_B)
4. Mass transfer coefficients (K_{BC} and K_{CE})
5. Coefficient for axial dispersion (D_{GA})

Catalytic gas fixed-bed

1. Coefficient for axial-dispersion

Results

An SO_2 conversion of 59.74% is obtained (catalyst type: LP-120) at the exit point of the reactor and the outlet temperature is (1014 °F) 545.55 °C. If LP-110 catalyst is used, 45.99% conversion is obtained with an exit temperature of (950 °F) 510 °C. It can be seen that conversion is higher for LP-120, hence SO_2 emission will be less. Keeping the catalyst type constant and varying the inlet flow rate shows that decreasing the flow rate increases the conversion thus reducing SO_2 emission. Since this is an exothermic reaction, conversion decreases at higher temperatures. The process uses intermediate coolers to lower the temperature, which gives a better conversion and reduces SO_2 emission.

Example 2, catalytic oxidation of ethanol in waste water

Organic pollutants dissolved in liquid water are usually removed by the biological oxidation process. However, some pollutants with aromatic structure decompose slowly under this process. Liquid-phase oxidation of organic pollutants in water with a solid catalyst provides a method that may remove dissolved organic compounds. This is a typical case when three-phase reactors are applied since the process contains liquid (aqueous

Table 9. Correlation used for the two-phase reactors

Gas-liquid continuous stirred tank reactor

Charpentier (1981)
 Van Dierendonck (1970)
 Van Dierendonck (1970)
 Van Dierendonck (1970)

Catalytic liquid fluidized-bed

Chu et al. (1953)

Catalytic gas fluidized-bed

Broadhurst and Becker (1975)
 Kunii and Levenspiel (1969)
 Horio and Nonaka (1987)
 Kunii and Levenspiel (1969)
 Kunii and Levenspiel (1969)

Catalytic gas fixed-bed

Kunii and Levenspiel (1969)

Table 10. Calculation of catalytic effectiveness factor

Catalytic effectiveness factor

$$\eta = \frac{1}{\phi} \left(\coth 3\phi - \frac{1}{3\phi} \right) \text{ where } \phi \text{ is the Thiele modulus}$$

First order reaction rate

$$\phi = \frac{R}{3} \sqrt{kS\alpha\rho_p/De}$$

$$\phi = \frac{R}{2} \sqrt{kS\alpha\rho_p/De}$$

$$\phi = L \sqrt{kS\alpha\rho_p/De}$$

$$\phi = \frac{R}{3} \rho_p (-r(CS)) \left\{ \int_0^{C_{Sk}} 2De k (-r(CS)) dCS \right\}^{-0.5}$$

Limiting reactant index

Effective diffusivity for the limiting reactant

Limiting reactant concentration at catalyst surface

Intrinsic reaction rate as non-linear function of surface concentration

Catalyst pellet radius

Catalyst density

General non-linear reaction rate
 where

k

D_{ek}

C_{Sk}

$(-r(C_s))$

R

ρ_p

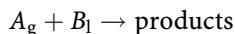
Limiting reactant is found by the following criterion

v

D_e

C_s

$$D_{eB}C_{SB} > 10vD_{eA}C_{SA}$$


Stoichiometry of B when stoichiometry of A=1

Effective diffusivity

Surface concentration

organic), gas (oxygen), and solid (catalyst). The objective of this analysis is to compare the ethanol conversion profiles for the different types of the three-phase reactors.

A typical catalyst used in this reaction is Pd-Al₂O₃ at 30 °C. The reaction has been shown to be first order with respect to oxygen and zero order with respect to ethanol. The reaction stoichiometry is represented as:

where

- A Oxygen
- B Ethanol
- g Gas phase
- l Liquid phase

The rate constant, k , is 0.0177 cm³/g s. Table 12 lists other parameters and operating conditions needed to run the ReaCat package. Since fixed-beds and suspended-beds have different characteristics regarding the catalyst load and catalyst particles diameter, different sizes of catalyst particles and catalyst loads were used in fixed-beds and suspended-beds. However, all other parameters and operating conditions are essentially the same in this comparison. Table 12 shows the different catalyst and reactor characteristics as used in the study.

Design models and solution algorithms

A dispersion model is used to describe the liquid-phase component material balances in the following reactors: trickle-bed, bubble fixed-bed, bubble slurry, and three-

phase fluidized. The gas phase was assumed to move in plug flow. Table 2 shows the component balance for the catalyst, gas, and liquid phase for the above reactors. Table 3 lists the component material balances in the well-agitated slurry reactor (CSTR slurry).

The catalytic effectiveness factor was calculated according to equations presented in Table 10. The gas-liquid and liquid-solid mass transfer coefficients were found using the correlations presented in Table 9. Values calculated for the mass transfer coefficients and catalytic effectiveness factors are given in Table 13.

Results and discussions

The conversion profiles for the fixed-bed (trickle and bubble fixed-bed) and the suspended-bed (slurry and fluidized) reactor groups were compared separately because of the difference in catalyst load and particle size. However the catalyst load and particle size are the same within each group.

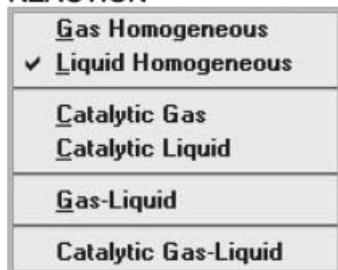

Figure 7 shows the ethanol conversion profiles in the trickle-bed and the bubble fixed-bed. The slight conversion increase in the bubble fixed-bed over the trickle-bed (about 4% at length=500 cm) is probably due to higher values of bubble fixed-bed mass transfer coefficients. The catalytic effectiveness factor for both of the fixed-bed reactors was found to be 0.13, while dispersion coefficients were negligible for both of these reactors in comparison with those for suspended-beds (Table 13).

Figure 8 shows a comparison of the ethanol conversion profiles in suspended-bed reactors. Similar catalyst loading and particle diameter were used in the three types of

Table 11. ReaCat, test cases

Catalytic gas fluidized-bed				
Multiple reaction system for the production of phthalic anhydride from naphthalene (Kunii and Levenspiel)				
Literature	ReaCat (1)	ReaCat (2)	ReaCat	
Conversion	97%	94.93%	85.49%	Dispersion
(1) Experimental bubble diameter values has been used by the program				
(2) The correlation of Horio and Nonaka (1984) has been used to find the bubble diameter				
Continuous gas-liquid stirred tank reactor				
Liquid phase oxidation of <i>o</i> -xylene into <i>o</i> -methylbenzoic acid by means of air (Froment and Bischoff 1979)				
Conversion	Literature	ReaCat		
83.39%	83.95%			
Trickle-bed				
Liquid-phase oxidation of formic acid in the presence of CuO.ZnO catalyst (Baldi et al. 1974; Goto and Smith 1975)				
Conversion	Experimental	ReaCat (plug flow)	ReaCat (dispersion)	
88.5%	91.0%	89.8%		
Continuous catalytic gas-liquid slurry stirred tank reactor				
Hydrogenation of aniline to cyclohexylamine (supported nickel catalyst) (Govindarao and Murthy 1975; Ramachandran and Chaudhari 1983)				
Reactor volume	Literature	ReaCat		
98 l	99 l			
(46% conversion of Aniline)				
Semi-batch catalytic gas-liquid slurry stirred tank reactor				
Butynediol synthesis by the reaction of gaseous acetylene with aqueous formaldehyde in the presence of copper acetylidyne catalysts (Kale et al. 1981)				
Conversion	Experimental	ReaCat (1)	ReaCat (2)	
62%	61.0%	68.5%		
(1) Adsorption at catalyst surface is taking into account by the program				
(2) No adsorption effects				

REACTION

100

Fig. 2. Reaction phase menu

REACTOR TYPE

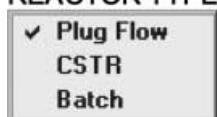


Fig. 3. Reactor type menu

suspended-beds. The catalytic effectiveness factor in suspended-beds was found to be much higher than that for fixed-beds (0.799 compared with 0.13 in fixed-beds) due to fine catalyst particles. The conversion profiles for the three-phase fluidized-bed and bubble slurry reactor had values that were very similar. The conversion in the three-phase fluidized-bed was higher by 9% than that in the bubble slurry reactor at length 500 cm. However, the conversion profile for the CSTR slurry reactor was much higher than in other suspended-beds. The conversion of ethanol in CSTR slurry was 52% higher than in the bubble slurry-bed and 37% higher than in the three-phase fluidized-bed at length 500 cm. The high conversion in the CSTR slurry reactor can be explained by the much higher mass transfer coefficients due to the mechanical agitation as seen in Table 13. The CSTR slurry reactor gave the best ethanol conversion among the suspended-beds, while the bubble fixed-bed gave the best conversion for the fixed-beds.

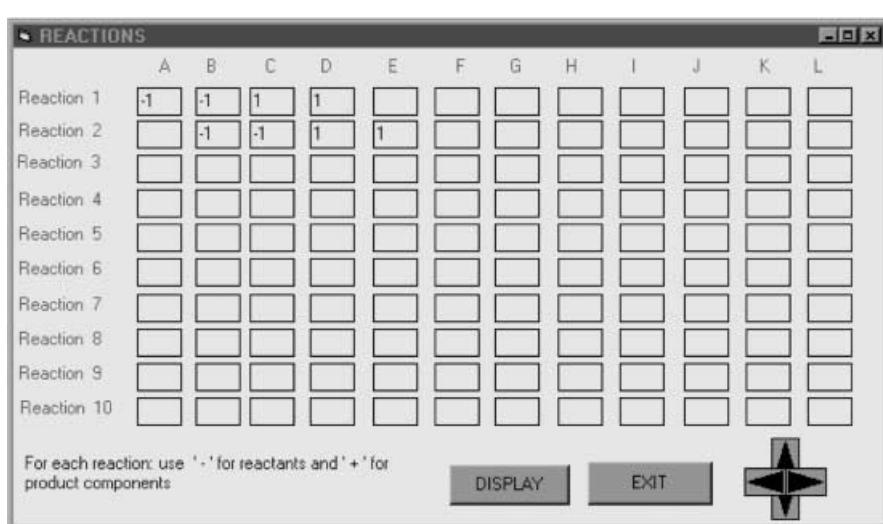
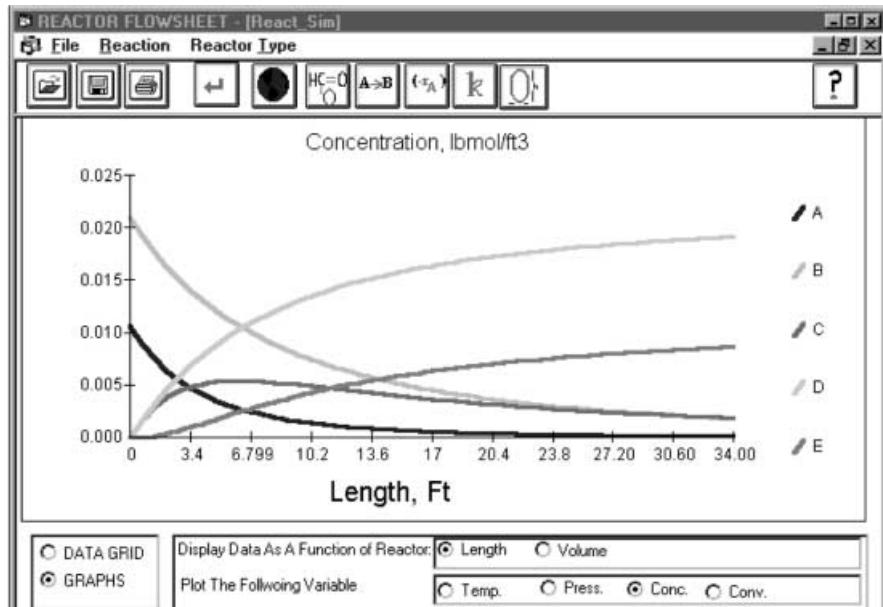


Fig. 4. Reaction stoichiometry input screen



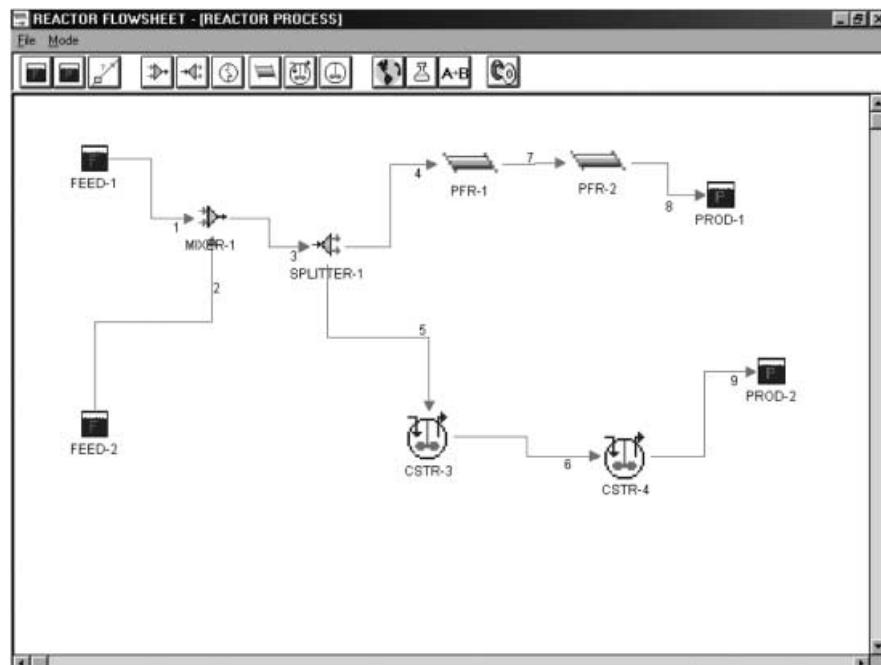

Fig. 5. An illustration of the graphical output of ReaCat program

Table 12. Parameters and operation conditions for the oxidation of ethanol

Parameter or operating condition	
Catalyst particle diameter (cm)	Fixed-beds (trickle-bed and bubble fixed-bed)=0.5
Catalyst load (g/cm ³)	Suspended-beds (slurry and fluidized-beds)=0.05
Reactor diameter (cm)	Fixed-beds=1.04
Gas flow rate (cm ³ /s)	Suspended-beds=0.1
Liquid flow rate (cm ³ /s)	20
Ethanol concentration in liquid-phase at inlet (mol/cm ³)	3140.0
Oxygen concentration at saturation (mol/cm ³)	62.8
Molecular diffusivity (cm ² /s)	4×10^{-4}
Effective diffusivity (cm ² /s)	4.2×10^{-6}
Catalyst density (g/cm ³)	4.7×10^{-5}
	4.16×10^{-5}
	1.2

Table 13. Mass transfer coefficients and catalytic effectiveness factor

Reactor	Catalytic effectiveness factor	G-L mass transfer coefficient (1/s)	Liquid phase dispersion coefficient (cm ² /s)	L-S mass transfer coefficient (1/s)
Trickle-bed	0.13	0.02	0.3266	0.0276
Bubble fixed-bed	0.13	0.144	0.9977	0.0408
CSTR slurry	0.799	1.05–1.45	–	1.14
Bubble slurry	0.799	0.02677	43.4	0.0952
Three-phase fluidized-bed	0.799	0.252	47.9	0.1

Fig. 6. Reactor flow-sheeting

This illustration of the use of the simulation package for these calculations demonstrates the significant capability to handle a very complex set of equations in a very effective and time saving manner. Other examples where simulation results were compared against experimental data have also been illustrated (Saleh 1994).

Conclusion

A multi-phase catalytic reactor simulator has been developed. The simulation package has models to design the following reactor types: plug flow, CSTR, batch, catalytic

fixed-bed, catalytic fluidized-bed, gas-liquid stirred tank, trickle-bed, three-phase fixed bubble-bed, bubble slurry column, CSTR slurry, three-phase fluidized-bed. Power-law reaction rates or the Langmuir–Hinshelwood models are included. It is equipped with correlation to estimate the external mass transfer effects (gas-liquid and liquid-solid) and dispersion coefficients. Estimation of the catalytic effectiveness factor to account for the intra-particle resistance is also included. Isothermal and non-isothermal/non-adiabatic conditions with multi-reaction systems with up to 30 reactions and 36 components are permitted.

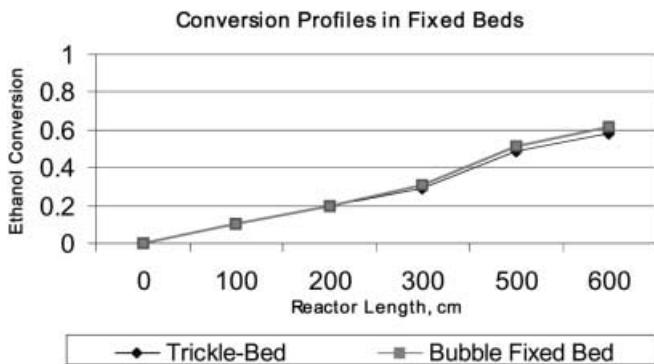


Fig. 7. Conversion of ethanol in three-phase fixed-beds

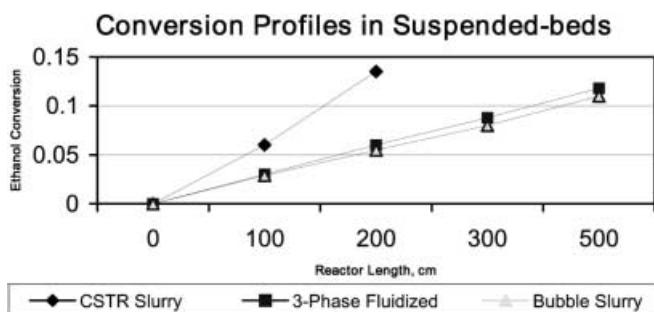


Fig. 8. Conversion of ethanol in three-phase suspended-beds

Reactor hydrodynamics such as pressure drop, power consumption, catalyst-wetting factor, and flow regimes may also be predicted.

References

Achwal SK, Stepanek JB (1976) Holdup profiles in packed beds. *Chem Eng J* 12:69–75

Akita K, Yoshida F (1974) Bubble size, interfacial area, and liquid-phase mass transfer coefficient in bubble column. *Ind Eng Chem Process Des Dev* 13:84–91

Baldi G, Gonti R, Alaria E (1974) Catalytic oxidation of formic acid in water: Interparticle diffusion in liquid-filled pores. *Chem Eng Sci* 33:21–25

Bern L, Lidefelt JO, Schoon NH (1976) Mass transfer and scale-up in fat hydrogenation. *J Am Oil Chem Soc* 463–466

Broadhurst T, Becker H (1975) Onset of fluidization and slugging in beds of uniform particles. *Am Inst Chem Eng J* 21:238–247

Calderbank PH (1958) Physical rate processes in industrial fermentation. Part I, The interfacial area in gas-liquid contacting with mechanical agitation. *Trans Inst Chem Eng* 36:443–446

Charpentier JC (1981) Mass transfer rates in gas-liquid absorbers and reactors. *Adv Chem Eng* 11:2–133

Chu JC, Kalil J, Weteroth WA (1953) Mass transfer in fluidized bed. *Chem Eng Prog* 49:141–149

Dakshinamurthy P, Subrahmanyam CCV, Kameswar RP (1974) Studies of gas-liquid mass transfer in gas-liquid fluidized beds. In: Angelino H et al (eds) *Fluidization and its applications*. Cepadues, Toulouse

Deckwer WD, Burchhart R, Zool G (1974) Mixing and mass transfer in tall bubble columns. *Chem Eng Soc* 29:2177–2188

Dhanuka VR, Stepanek JB (1980) Gas-liquid mass transfer in three-phase fluidized bed. In: Matson JR (ed) *Fluidization*. Plenum, New York

Dharwadkar A, Sylvester ND (1977) Liquid-solid mass transfer in trickle-bed reactors. *Am Inst Chem Eng J* 23:940–944

El-Temtamy SA, El-Sharnoubi YO, El-Halwagi MM (1979) Liquid dispersion in gas-liquid fluidized beds. *Chem Eng J* 18:151–172

Ellman MJ, Midoux G, Wild A, Laurent A, Charpentier JC (1988) A new, improved pressure drop correlation for trickle-bed reactors. *Chem Eng Sci* 43:2201–2206

Ellman MJ, Midoux G, Wild A, Laurent A, Charpentier JC (1990) A new, improved liquid holdup correlation for trickle-bed reactors. *Chem Eng Sci* 45:1677–1683

Fair JR (1967) Designing gas-sparged reactors. *Chem Eng* 74:67–72

Froment GF, Bischoff KB (1979) *Chemical reactor analysis and design*. Wiley, New York

Fukushima S, Kusaka K (1979) Gas-liquid mass transfer and hydrodynamic flow in packed column with cocurrent upward flow. *J Chem Eng Jpn* 12:706–713

Goto S, Smith JM (1975) Trickle-bed reactor performance. Part I. Holdup and mass transfer effects. *Am Inst Chem Eng J* 21:706–720

Govindarao VMH, Murthy KYR (1975) Liquid-phase hydrogenation of aniline in a trickle-bed reactor. *J Appl Chem Biotechnol* 25:169–181

Harris JL, Norman JR (1972) *Ind Eng Chem Process Des Dev* 11:564

Hedge SC (1999) Simulation for pollution prevention: gas liquid reactors and sulfuric acid alkylation process. *MSE Thesis*, Lamar University

Hochman JM, Effron E (1969) Two-phase concurrent down flow in packed beds. *Ind Eng Chem Fundam* 8:63

Horio M, Nonaka A (1987) A generalized bubble diameter correlation for gas-solid fluidized beds. *Am Inst Chem Eng J* 33:1865–1871

Kale SS, Chaudhari RV, Ramachandran PA (1981) Butyendiol synthesis. A kinetic study. *Ind Eng Chem Prod Res Dev* 20:309–314

Kim SD, Baker CGJ, Bergougnou MA (1975) Phase holdup characteristics of three-phase fluidized beds. *Can J Chem Eng* 53:134–139

Kobayashi T, Saito H (1965) Solid-liquid mass transfer in bubble columns. *Kagaku Koide* 3:210

Kunii D, Levenspiel O (1969) *Fluidization engineering*. Wiley, New York

Larkins RP, White RR, Jeffery DW (1961) Two-phase concurrent flow in packed beds. *Am Inst Chem Eng J* 7:231–239

Lee JC, Sherrard AJ, Buckley PS (1974) Optimum particle size in three-phase fluidized-bed reactor. In: Angelino H et al (eds) *Fluidization and its applications*. Cepadues, Toulouse

Luong HT, Volesky B (1979) Mechanical power requirements of gas-liquid agitated systems. *Am Inst Chem Eng J* 25:893–895

Mangartz KH, Pilhofer T (1981) Interpretation of mass transfer measurements in bubble columns considering dispersion of both phases. *Chem Eng Sci* 36:1069–1077

Maselker RA (1970) Bubble columns. *Br Chem Eng* 15:1297–1366

Michel BJ, Miller SA (1962) Power requirement of gas-liquid agitated systems. *Am Inst Chem Eng J* 8:262–266

Michell RW, Furzer IA (1972) Mixing in trickle flow through packed beds. *Chem Eng J* 4:53–63

Ostergaard K (1974) Gas-liquid-particle operation in chemical reaction engineering. *Adv Chem Eng* 7:71–137

Pike RW, Hopper JR, Saleh J, Yaws CL, Hertwig TA, Chen X, Telang K (1998) An advanced process analysis system for pollution prevention. In: *Proceedings of Third International Conference on Foundations of Computer Aided Process Operations*, Snowbird, Utah, 5–10 July. A.I.Che Symposium Series, No 320, Vol 94, pp 421–427

Ramachandran PA, Chaudhari RV (1983) Three phase catalytic reactors. Gordon and Breach, London

Reiss LP (1967) Cocurrent gas-liquid contacting in packed columns. *Ind Eng Chem Process Des Dev* 6:486–499

Saleh JM (1994) Computer simulation of three-phase catalytic gas-liquid reactions. *Doctoral Dissertation*, Lamar University, Beaumont, Texas

Sano Y, Yamaguchi N, Adachi T (1974) Mass transfer coefficients for suspended particles in agitated vessels and bubble columns. *J Chem Eng Jpn* 7:255–261

Sato Y, Hirose H, Takahashi F, Toda M (1973) Pressure loss and liquid holdup in packed-bed reactor with cocurrent gas-liquid down flow. *J Chem Eng Jpn* 6:147–152

Shah TY (1979) *Gas-liquid-solid reactor design*. McGraw-Hill, New York

Specchia V, Baldi G (1979) Heat transfer in trickle-bed reactors. *Chem Eng Commun* 3:483–488

Specchia V, Sicardi S, Gianetto A (1978) Absorption in packed towers with cocurrent flow. *Am Inst Chem Eng J* 20:646–653

Stiegel GJ, Shah YT (1977) Backmixing and liquid holdup in gas-liquid cocurrent up flow packed columns. *Ind Eng Chem Process Des Dev* 16:37–43

Tarhan MO (1979) Catalytic reactor design. McGraw-Hill, New York

Telang KS (1996) Advanced process analysis system. MSE Thesis, Chemical Engineering Department, Louisiana State University

Tsutsumi A, Kim YH, Togawa S, Yoshida K (1987) Classification of three-phase reactors. *Sadhana* 10:247–259

Turpin JL, Huntington RL (1967) Prediction of pressure drop for two-phase, two-component cocurrent flow in packed beds. *Am Inst Chem Eng J* 13:1196–1202

Van Dierendonck LL (1970) *Vergrottingsregels voor gasbelwassers*. Ph.D. Thesis, Twente University, Netherlands

Van Krevelen DW, Krekels JTC (1948) Rate of dissolution of solid substances. Part I.: physical dissolution. *Recl Trav Chim Pays-Bas* 67:512

Waghchoure S (1999) Simulation of two-phase catalytic fluidized bed reactors for pollution prevention. MSE Thesis, Lamar University, Beaumont, Texas

Yamashita F, Aeon H (1975) Gas holdup in bubble columns. *J Chem Eng Jpn* 8:334

Yung CN, Wong CW, Change CL (1979) Gas holdup and aerated power consumption in mechanically stirred tanks. *Can J Chem Eng* 57:672–677